Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1997644

ABSTRACT

Cyclophilin A (CypA), which has peptidyl-prolyl cis-trans isomerase (PPIase) activity, regulates multiple functions of cells by binding to its extracellular receptor CD147. The CypA/CD147 interaction plays a crucial role in the progression of several diseases, including inflammatory diseases, coronavirus infection, and cancer, by activating CD147-mediated intracellular downstream signaling pathways. Many studies have identified CypA and CD147 as potential therapeutic targets for cancer. Their overexpression promotes growth, metastasis, therapeutic resistance, and the stem-like properties of cancer cells and is related to the poor prognosis of patients with cancer. This review aims to understand the biology and interaction of CypA and CD147 and to review the roles of the CypA/CD147 interaction in cancer pathology and the therapeutic potential of targeting the CypA/CD147 axis. To validate the clinical significance of the CypA/CD147 interaction, we analyzed the expression levels of PPIA and BSG genes encoding CypA and CD147, respectively, in a wide range of tumor types using The Cancer Genome Atlas (TCGA) database. We observed a significant association between PPIA/BSG overexpression and poor prognosis, such as a low survival rate and high cancer stage, in several tumor types. Furthermore, the expression of PPIA and BSG was positively correlated in many cancers. Therefore, this review supports the hypothesis that targeting the CypA/CD147 interaction may improve treatment outcomes for patients with cancer.


Subject(s)
Cyclophilin A , Neoplasms , Basigin/genetics , Basigin/metabolism , Cyclophilin A/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction
2.
Phys Chem Chem Phys ; 24(31): 18905-18914, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1972673

ABSTRACT

CD147 functions as the receptor of extracellular cyclophilin A (CypA) in various diseases, and CD147-CypA binding ulteriorly underlies the pathological process of various viral infections including HIV-1, SARS, and SARS-CoV-2. Although CyPA has been identified as a key intermediate pro-inflammatory factor, the mechanism by which CD147 cooperates with CypA in the development of the cytokine storm remains largely unknown, and the binding profile of CD147 with CypA remains to be elucidated as well. Here, we prepared three binding models of the CD147-CypA complex, including the active site of CypA severally binding to the groove bound by the Ig1 and Ig2 domains (model-0), P180-G181 (model-1), and P211 (model-2) of CD147, as well as introducing mutations P180A-G181A and P211A individually in each model. All systems were studied using accelerated molecular dynamics simulations and the molecular mechanics generalized Born surface area (MM/GBSA) method. For model-0, CypA bound to the ectodomain of CD147 with the highest binding affinity. Moreover, mutations P180A-G181A of CD147 in model-0 decreased the binding affinity and weakened the dynamic correlation between CD147 and CypA, which resulted in CypA shifting from the initial binding location. Other residue mutations of CD147 did not significantly affect the CD147-CypA binding, as reflected by the energy and structural analyses. Compared with surface plasmon resonance results and nuclear magnetic resonance shift signals, CypA should tend to reciprocally bind to the groove of CD147, and the binding process might be modulated by P180-G181 rather than P211. Besides, residue R201 of CD147 is critical for CD147-CypA binding and needs further experimental verification. These findings further our understanding of the recruitment between CD147 and CypA and its potential role in the development of inflammation and viral infection.


Subject(s)
COVID-19 , Cyclophilin A , Cyclophilin A/chemistry , Cyclophilin A/metabolism , Humans , Molecular Dynamics Simulation , SARS-CoV-2
3.
Drug Discov Today ; 27(7): 1895-1912, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850938

ABSTRACT

Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cyclophilin A/pharmacology , Drug Repositioning , Humans , SARS-CoV-2 , Virus Replication
4.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1518200

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
5.
Am J Respir Crit Care Med ; 204(4): 421-430, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1180997

ABSTRACT

Rationale: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator-induced lung injury. eCypA (extracellular CypA [cyclophilin A]) is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to coronavirus disease (COVID-19). Objectives: To explore the involvement of eCypA in the pathophysiology of ventilator-induced lung injury. Methods: Mice were ventilated with a low or high Vt for up to 3 hours, with or without blockade of eCypA signaling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretching to explore the cellular source of eCypA, and CypA concentrations were measured in BAL fluid from patients with acute respiratory distress syndrome to evaluate the clinical relevance. Measurements and Main Results: High-Vt ventilation in mice provoked a rapid increase in soluble CypA concentration in the alveolar space but not in plasma. In vivo ventilation and in vitro stretching experiments indicated the alveolar epithelium as the likely major source. In vivo blockade of eCypA signaling substantially attenuated physiological dysfunction, macrophage activation, and MMPs (matrix metalloproteinases). Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated concentrations of eCypA within BAL fluid. Conclusions: CypA is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. eCypA represents an exciting novel target for pharmacological intervention.


Subject(s)
Anti-Inflammatory Agents/immunology , Cyclophilin A/immunology , Inflammation/immunology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/immunology , Respiratory Mucosa/immunology , Ventilator-Induced Lung Injury/immunology , Ventilator-Induced Lung Injury/physiopathology , Animals , COVID-19/genetics , COVID-19/physiopathology , Cells, Cultured/drug effects , Cyclophilin A/pharmacology , Humans , Inflammation/physiopathology , Male , Mice , Models, Animal , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Ventilator-Induced Lung Injury/genetics
6.
Sheng Wu Gong Cheng Xue Bao ; 36(4): 605-611, 2020 Apr 25.
Article in Chinese | MEDLINE | ID: covidwho-1024807

ABSTRACT

Cyclophilin A (CypA) is a widely distributed and highly conserved protein in organisms. It has peptidyl-prolyl cis/trans isomerase activity and is a receptor for cyclosporin A (CsA). Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses. Seven types of coronaviruses are currently known to infect humans, among which SARS-CoV, MERS-CoV, and SARS-CoV-2 are fatal for humans. It is well established that CypA is essential for the replication of various coronaviruses such as SARS-CoV, CoV-229E, CoV-NL63, and FCoV. Additionally, CsA and its derivatives (ALV, NIM811, etc.) have obvious inhibitory effects on a variety of coronaviruses. These results suggest that CypA is a potential antiviral target and the existing drug CsA might be used as an anti-coronavirus drug. At the end of 2019, SARS-CoV-2 raged in China, which seriously theatern human health and causes huge economic lases. In view of this, we describe the effects of CypA on the replication of coronaviruses and the antiviral activities of its inhibitors, which will provide the scientific basis and ideas for the development of antiviral drugs for SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections , Coronavirus/drug effects , Coronavirus/growth & development , Cyclophilin A/antagonists & inhibitors , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Pandemics , Pneumonia, Viral , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/growth & development , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cyclosporine/chemistry , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/growth & development , SARS-CoV-2 , Virus Replication/drug effects
7.
Sci Rep ; 10(1): 22303, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-989953

ABSTRACT

The increasing body of literature describing the role of host factors in COVID-19 pathogenesis demonstrates the need to combine diverse, multi-omic data to evaluate and substantiate the most robust evidence and inform development of therapies. Here we present a dynamic ranking of host genes implicated in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). We conducted an extensive systematic review of experiments identifying potential host factors. Gene lists from diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes. From 32 datasets, the top ranked gene was PPIA, encoding cyclophilin A, a druggable target using cyclosporine. Other highly-ranked genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic targets (IL1A) for COVID-19. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating FYCO1 over other nearby genes in a disease-associated locus on chromosome 3. Researchers can search and review the gene rankings and the contribution of different experimental methods to gene rank at https://baillielab.net/maic/covid19 . As new data are published we will regularly update the list of genes as a resource to inform and prioritise future studies.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Algorithms , CD3 Complex/genetics , CD4 Antigens/genetics , Chemokine CXCL10/genetics , Computational Biology , Cyclophilin A/genetics , Cyclosporine/pharmacology , Databases, Genetic , Genome-Wide Association Study , Genomics , Humans , Immune System , Immunogenetics , Inflammation , Interleukin-1alpha/genetics , Microtubule-Associated Proteins/genetics , Proteomics
10.
mBio ; 11(5)2020 09 15.
Article in English | MEDLINE | ID: covidwho-772277

ABSTRACT

Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.IMPORTANCE The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection.


Subject(s)
Chiroptera/immunology , Gammaretrovirus/immunology , Immunity, Innate/immunology , Lentiviruses, Primate/immunology , Spumavirus/immunology , 3T3 Cells , Animals , Aotidae , Cats , Cell Line , Chiroptera/virology , Cyclophilin A/metabolism , Ferrets , Gammaretrovirus/growth & development , HEK293 Cells , Humans , Lentiviruses, Primate/growth & development , Mice , RNA Interference , RNA, Small Interfering/genetics , Spumavirus/growth & development , Tripartite Motif Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL